Abstract
Industrial incidents can result in radionuclide release in the environment, among which 110mAg. Indeed, under particular circumstances, non-negligible amounts of 110mAg have been measured in the marine environment (as observed in Fukushima Dai-ichi incident). This element can therefore be accumulated by aquatic organisms through different pathways including the trophic transfer. The present study aimed at examining the variation of 110mAg assimilation efficiency (AE) by turbots, Scophthalmus maximus, when exposed through different feeds. Pulse-chase feeding experiments were carried out in mesocosms, using radiolabelled feeds (natural prey and commercial pellets). Depuration kinetics of 110mAg over 21 days were generally fitted by a two-component exponential model; the ingested radioelement was poorly assimilated by turbots regardless of the food item that was used (AE always <3%). Concentration and subcellular distribution of 110mAg in prey did not seem to influence its assimilation by turbot. These results suggest that physiological mechanisms could occur in fish that would prevent the transfer of 110mAg from gut lumen to internal organs (e.g. 110mAg neutralization in the lumen of the stomach, detoxification mechanisms occurring in the gut).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.