Abstract

Variation in nutrient excretion rates and stoichiometric ratios (e.g., nitrogen to phosphorus) by consumers can have substantial effects on aquatic ecosystem function. While phylogenetic signals within an assemblage often explain variation in nutrient recycling rates and stoichiometry, the phylogenetically conserved traits that underlie this phenomenon remain unclear. In particular, variation in nutrient excretion stoichiometry across a phylogeny might be driven by phylogenetic patterns in either diet or body stoichiometry. We examined the relative importance of these traits in explaining variation in nutrient recycling rates and stoichiometry in a diverse family of Neotropical-armored catfishes, Loricariidae, in Panamanian streams. We found significant variation in nutrient mineralization traits among species and subfamilies, but variation in nutrient excretion stoichiometry among species was best explained by trophic position rather than body stoichiometry. The variation in trophic position among Panamanian species was consistent with variation in the trophic niche of their genera across South America, suggesting that phylogenetic patterns underpin the evolution of trophic and nutrient excretion traits among these species. Such geographical variation in nutrient mineralization patterns among closely related species may be common, given that trophic variation in fish lineages occurs widely. These results suggest that information on trophic trait evolution within lineages will advance our understanding of the functional contribution of animals to biogeochemical cycling.

Highlights

  • Consumer-driven nutrient recycling and storage can substantially alter ecosystem function in aquatic ecosystems [1,2,3]

  • Such geographical variation in nutrient mineralization patterns among closely related species may be common, given that trophic variation in fish lineages occurs widely. These results suggest that information on trophic trait evolution within lineages will advance our understanding of the functional contribution of animals to biogeochemical cycling

  • Variance in any or all of these three parameters could explain interspecific differences in nutrient recycling, yet most studies have focused on consumer body stoichiometry (e.g., [5,6,7,8])

Read more

Summary

Introduction

Consumer-driven nutrient recycling and storage can substantially alter ecosystem function in aquatic ecosystems [1,2,3]. The N:P ratio at which consumers recycle nutrients is thought to vary with body N:P, diet N:P, and the maximum accumulation efficiency of N or P [4]. Variance in any or all of these three parameters could explain interspecific differences in nutrient recycling, yet most studies have focused on consumer body stoichiometry (e.g., [5,6,7,8]). Variation in nutrient mineralization stoichiometry within species is driven largely by variation in diet and consumption rate [10,11,12]. The primary factors driving variation in consumer-driven nutrient recycling vary with the scale of biological organization being studied, yet the relative importance of factors such as consumer body stoichiometry, diet, and assimilation efficiency at intermediate scales such as among species within a family remains unclear

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.