Abstract

Hornsund is a cold-water fjord in southwestern Spitsbergen, Svalbard Archipelago, with a resident biota that exhibit typical low-temperature Arctic features. Carbon (δ13C) and nitrogen (δ15N) isotopic signatures of macrobenthic fauna and its potential food sources were measured in summer 2008 to delineate the trophic structure of the bottom community and to identify its principal carbon sources. The soft-bottom fauna at a water depth of 100 m was found to rely primarily on detritus, which is supplied by sedimentation of suspended organic matter from the water column and horizontal transport of refractory macroalgae from euphotic coastal habitats. Through resuspension by bottom currents, deposited particles also contributed to the diet of benthic filter-feeders. Since benthic organisms were significantly enriched in 13C compared to epibenthic zooplankton (mainly amphipods and decapods), the stable carbon signature provides a tool to differentiate benthic and pelagic feeding habits. The benthic food web was characterized by a conventional trophic structure with decreasing species numbers in increasing trophic levels. Primary consumers feeding on a mixture of plant matter, fecal pellets, decaying animal tissue, bacteria, and protists accounted for the greatest biomass share (62 % of the total macrobenthic biomass), followed by secondary consumers (38 %). Based on δ15N signatures, three trophic levels were detected, corresponding to the following feeding guilds: filter-feeders and feeding generalists (mainly bivalves, crustaceans, polychaetes, and some fish), mixed detritivore–carnivores (polychaetes, priapulids, crustaceans, and ophiuroids) and obligate carnivores (ascidians). The average food chain length (4.5 trophic levels) suggests that high-quality food is readily available in this Arctic fjord ecosystem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.