Abstract

The western Antarctic Peninsula (AP) is experiencing significant changes to sea ice cover, altering the macroalgal cover and potentially affecting the foundation of benthic food webs. We used fatty acid signatures as dietary and physiological trophic biomarkers to test the hypothesis that a gradient of 36-88% mean annual ice cover would affect the trophic ecology of fleshy macroalgae and diverse benthic invertebrate consumers along the western AP. We used SCUBA to collect organisms from benthic rocky nearshore habitats, 5-35 m depth, at 15 study sites during April-May of 2019. There were no consistent ecosystem-scale differences in the nutritionally important polyunsaturated fatty acids or other univariate fatty acid summary categories in either the seaweeds or invertebrates across the ice gradient, but we did find site-level differences in the multivariate fatty acid signatures of all seaweeds and invertebrates. Ice cover was a significant driver of the fatty acid signatures of 5 invertebrates, including 3 sessile (an anemone, a sponge, and a tunicate) and 2 mobile consumers (a sea star and a sea urchin). The multivariate fatty acid signatures of 2 other sea stars and a limpet were not affected by the ice gradient. These results indicate that the trophic ecology and resource assimilation of sessile consumers that are more connected to the macroalgal-derived food web will be more sensitive than mobile consumers to impending changes to annual ice and macroalgal cover along the western AP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call