Abstract

This work addresses the physiological regulation of skeletal muscle acetylcholinesterase (AChE) isoforms by examining endplate-enriched samples from adult rat gracilis muscles 48 h after: low-intensity treadmill exercise; obturator nerve transection; nerve impulse conduction blockade by tetrodotoxin; acetylcholine (ACh) receptor (AChR) inactivation by alpha-bungarotoxin; and, addition of obturator nerve extracts to muscles in organ culture. Results document the important role(s) of functional AChRs and ACh-AChR interactions in the differential control of individual AChE isoenzymes. A theoretical model based on these and other findings considers that: AChR activation by spontaneously released ACh is the only neural factor required for the maintenance of G1 + G2 AChE; the amount of A12 AChE is determined by the combined effects of ACh and another neurogenic substance; although mechanisms intrinsic to myofibers control normal levels of G4 AChE, enhanced production of this isoform is initiated through increasing the frequency of ACh-AChR interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.