Abstract
Bathymodiolus childressi is a foundation species at methane seeps on the upper- continental slope of the Gulf of Mexico. Other species of the genus are known to gain the advan- tage of variable food availability through trophic plasticity, by hosting dual microbial symbionts while retaining their own particle feeding ability. B. childressi, however, hosts only a single methanotrophic symbiont, and the possibility of trophic plasticity has not been fully examined in this species. Feeding strategies of archival specimens from 2 geochemically contrasting seeps from the Gulf of Mexico (Bush Hill and Brine Pool NR-1) were characterized using 4-source mix- ing analysis of δ 13 C, δ 15 N and δ 34 S values. Bush Hill mussels used a single thermogenic methane pool and derived N and S from different sources. Brine Pool mussels used 2 separate methane pools; the primary one being biogenic and the secondary possibly a mix of biogenic and thermo- genic. Utilization of particulate material was less common at Brine Pool than at Bush Hill. Bush Hill appears to offer lower levels of methane-based resources with particulate material having a greater, and sometimes dominant role in nutrition. Spatial patterns within the seeps were found but were not reflective of simple gradients. Some temporal changes occurred at both yearly scales and between samples, which were collected 17 yr apart. The 4-source mixing model used extrap- olations of mussel isotope values and limited environment characterization to infer likely trophic sources. The actual sources, however, remain unidentified. Future research across a wider range of seeps as well as experimental studies should be used to test the validity of the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.