Abstract

Quantifying the trophic role of sharks in coastal ecosystems is crucial for the construction of accurate ecosystem models. This is particularly important for wide-ranging species like the Atlantic sharpnose shark (Rhizoprionodon terraenovae), ubiquitous across the northern Gulf of Mexico. We used gut content and stable isotope analyses to determine if differences in abundance of Atlantic sharpnose sharks in the waters around Mobile Bay, Alabama translated into differences in dietary sources or trophic position among sharks sampled east and west relative to the mouth of the bay. Gut content analysis suggested that Atlantic sharpnose sharks eat primarily teleost fishes (%IRI > 90% across size classes), and both stomach content and stable isotope analyses highlighted an ontogenetic shift in diet. Nitrogen stable isotope data from liver and muscle tissues indicated regional shifts in trophic position for Atlantic sharpnose sharks. The mixing model SIAR (stable isotope analysis in R) v.4.0.2 was used to suggest possible contributions from likely prey items for Atlantic sharpnose sharks sampled east and west of Mobile Bay. Portunid crabs and shrimp made higher contributions to the diet of Atlantic sharpnose sharks in the western region, compared to higher and more variable contributions from fish like croaker (Micropogonias undulatus) and hardhead catfish (Arius felis) in the eastern region. Our results suggest trophic plasticity in Atlantic sharpnose sharks, findings that emphasize the importance of examining regional variation in trophic position when constructing coastal foodweb models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call