Abstract
Trophic interactions between the mesozooplankton and the microbial web (bacteria, protozoa) were studied in 2 in situ grazing experiments in the epilimnion and the deep chlorophyll maximum (DCM) of a mesotrophic lake. We combined the Landry-Hassett dilution technique, whereby growth and grazing rates can be determined simultaneously, with the presence or absence of mesozooplankton and additional nutrients. The epilimnion was cladoceran-dominated, and had relatively high ciliate, and low heterotrophic nanoflagellate (HNF) abundance, while the DCM was rotifer-dominated, with fewer ciliates, but higher HNF abundance. Temperature differed by 13°C (22°C in the epilimnion; 9°C in the DCM). The community differences between the epilimnion and DCM and the experimental manipulations had their greatest effects on ciliates, lesser effects on HNF, and essentially no net effect on bacteria. Bacteria growth rates and grazing losses did not differ between the epilimnion and DCM, despite the large differences in chlorophyll a and abiotic parame- ters, and were independent of nutrient addition or mesozooplankton removal. In contrast, the exper- imental manipulations produced relatively moderate changes in HNF growth rates and grazing losses in both the epilimnion and DCM. Although HNF densities were 3 times higher in the DCM than the epilimnion, epilimnetic HNF growth rates were approximately twice the rate found in the DCM. This was consistent with both higher temperature and a release from predation through indi- rect predatory effects on alternative HNF predators like ciliates. In the DCM, crustacean zooplank- ton were less abundant and therefore had smaller direct and indirect effects on the HNF, while the metazoan microzooplankton (mainly rotifers) were more important. Ciliate growth rates were lower in the epilimnion than in the DCM, but only in the epilimnion were ciliate growth rates enhanced by the addition of nutrients. The cladoceran-dominated community of the epilimnion was able to reduce ciliate growth rates to negative values, while in the rotifer-dominated DCM, ciliate growth rates were always positive along a predator density gradient. These results demonstrate that while ciliates, and to a lesser extent heterotrophic flagellates, respond quickly to changes in predator community com- position, there are so many other direct and indirect pressures on bacteria that changes in the meso- zooplankton community composition have no net effect on their adundance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.