Abstract

BackgroundThe soil mycobiome is composed of a complex and diverse fungal community, which includes functionally diverse species ranging from plant pathogens to mutualists. Among the latter are arbuscular mycorrhizal fungi (AMF) that provide phosphorous (P) to plants. While plant hosts and abiotic parameters are known to structure AMF communities, it remains largely unknown how higher trophic level organisms, including protists and nematodes, affect AMF abundance and community composition.ResultsHere, we explored the connections between AMF, fungivorous protists and nematodes that could partly reflect trophic interactions, and linked those to rhizosphere P dynamics and plant performance in a long-term manure application setting. Our results revealed that manure addition increased AMF biomass and the density of fungivorous nematodes, and tailored the community structures of AMF, fungivorous protists, and nematodes. We detected a higher abundance of AMF digested by the dominant fungivorous nematodes Aphelenchoides and Aphelenchus in high manure treatments compared to no manure and low manure treatments. Structural equation modeling combined with network analysis suggested that predation by fungivorous protists and nematodes stimulated AMF biomass and modified the AMF community composition. The mycorrhizal-fungivore interactions catalyzed AMF colonization and expression levels of the P transporter gene ZMPht1;6 in maize roots, which resulted in enhanced plant productivity.ConclusionsOur study highlights the importance of predation as a key element in shaping the composition and enhancing the biomass of AMF, leading to increased plant performance. As such, we clarify novel biological mechanism of the complex interactions between AMF, fungivorous protists, and nematodes in driving P absorption and plant performance.3Rct2UgWKJzaMmE1q1nvDRVideo

Highlights

  • The soil mycobiome contains functionally diverse fungi, many of which are notorious plant pathogens that reduce plant performance [1]

  • We asked the following three questions: (1) how do biomass, diversity and composition of the arbuscular mycorrhizal fungi (AMF) community respond to manure treatments? (2) How and to what extent are fungivorous protists and nematodes linked to their potential prey AMF community? and (3) how do AMF-fungivore interactions mediate P uptake and plant productivity? Our work suggests that predation by fungivorous protists and nematodes positively regulates the biomass and composition of the AMF community, and subsequently promotes P uptake and plant productivity

  • AMF, and fungivorous protists and nematodes jointly mediated P availability and root P transporter gene AMF, mycophagous protists, and fungivorous nematodes were clustered into four distinct modules in co-occurrence networks, which we examined to decipher module-trait relationships (Fig. 5)

Read more

Summary

Introduction

The soil mycobiome contains functionally diverse fungi, many of which are notorious plant pathogens that reduce plant performance [1]. It is increasingly accepted that organic manure application shapes AMF community structure, and subsequently promotes AMF colonization, P absorption, and plant performance [5, 6]. This knowledge mostly stems from simplified controlled greenhouse experiments with little field-based evidence. The soil mycobiome is composed of a complex and diverse fungal community, which includes functionally diverse species ranging from plant pathogens to mutualists. Among the latter are arbuscular mycorrhizal fungi (AMF) that provide phosphorous (P) to plants. While plant hosts and abiotic parameters are known to structure AMF communities, it remains largely unknown how higher trophic level organisms, including protists and nematodes, affect AMF abundance and community composition

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.