Abstract

3-nitropropionic acid (3-NPA) is a naturally occurring neurotoxin produced by legumes of the genus Astragalus and Arthrium fungi. Acute exposure to 3-NPA results in striatal astrocytic death and variety of behavior dysfunction in rats. Oxidative stress has been reported to play an important role in 3-NPA-induced neurotoxicity. Trolox is a potent free radical chain breaking antioxidant which has been shown to restore structure and function of the nervous system following oxidative stress. This rapid and efficient antioxidant property of trolox was attributed to its enhanced water solubility as compared with alpha-tocopherol. This investigation was aimed to study the effect of trolox against 3-NPA-induced neurotoxicity in female Wistar rats. The animals received trolox (0, 40mg, 80mg and 160mg/kg, orally) daily for 7days. 3-NPA (25mg/kg, i.p.) was administered daily 30min after trolox for the same duration. One additional group of rats served as control (vehicle only). On day 8, the animals were observed for neurobehavioral performance. Immediately after behavioral studies, the animal's brains were dissected out for histological studies. Lesions in the striatal dopaminergic neurons were assessed by immunohistochemical method using tyrosine hydroxylase immunostaining. Administration of 3-NPA alone caused significant depletion of striatal dopamine and glutathione, whereas, the levels of thiobarbituric acid reactive substance (TBARS) and nitric oxide (NO) were significantly increased suggesting an elevated level of oxidative stress. Trolox significantly and dose-dependently protected animals against 3-NPA-induced neurobehavioral, neurochemical and structural abnormalities. These results clearly suggest that protective effect of trolox against 3-NPA-induced neurotoxicity is mediated through its free radical scavenging activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call