Abstract

Troglitazone was studied in pH-sensitive LLC-PK1-F+ cells to determine the effect on pHi and glutamine metabolism as well as the role of peroxisome proliferator-activated receptor (PPARgamma)-dependent and PPARgamma-independent signaling pathways. Troglitazone induces a dose-dependent cellular acidosis that occurs within 4 min and persists over 18 h as a result of inhibiting Na+/H+ exchanger-mediated acid extrusion. Cellular acidosis was associated with glutamine-dependent augmented [15N]ammonium production and decreased [15N]alanine formation from 15N-labeled glutamine. The shift in glutamine metabolism from alanine to ammoniagenesis appears within 3 h and is associated after 18 h with both a reduction in assayable alanine aminotransferase (ALT) activity as well as cellular acidosis. The relative contribution of troglitazone-induced cellular acidosis vs. the decrease in assayable ALT activity to alanine production could be demonstrated. The PPARgamma antagonist bisphenol A diglycide ether (BADGE) reversed both the troglitazone-induced cellular acidosis and ammoniagenesis but enhanced the troglitazone reduction of assayable ALT activity; BADGE also blocked troglitazone induction of peroxisome proliferator response element-driven firefly luciferase activity. The protein kinase C (PKC) inhibitor chelerythrine mimics troglitazone effects, whereas phorbol ester reverses the effects on ammoniagenesis consistent with troglitazone negatively regulating the DAG/PKC/ERK pathway. Although functional PPARgamma signaling occurs in this cell line, the major troglitazone-induced acid-base responses appear to be mediated by pathway(s) involving PKC/ERK.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.