Abstract

The antibiotic streptothricin (ST) possesses an amino sugar bound to an l-β-lysine (β-Lys) residue via a peptide bond. The peptide bond formation has been shown to be catalyzed by a nonribosomal peptide synthetase (NRPS) during ST biosynthesis. The focus of this study is the closely related ST analogue BD-12, which carries a glycine-derived side chain rather than a β-Lys residue. Here, in Streptomyces luteocolor NBRC13826, we describe our biosynthetic studies of BD-12, which revealed that the peptide bond between the amino sugar and the glycine residue is catalyzed by a Fem-like enzyme (Orf11) in a tRNA-dependent manner rather than by an NRPS. Although there have been several reports of peptide bond-forming tRNA-dependent enzymes, to our knowledge, Orf11 is the first enzyme that can accept an amino sugar as a substrate. Our findings clearly demonstrate that the structural diversity of the side chains of ST-type compounds in nature is generated in an unusual manner via two distinct peptide bond-forming mechanisms. Moreover, the identification and functional analysis of Orf11 resulted in not only the production of new ST-related compounds, but also the provision of new insights into the structure-activity relationship of the ST-related antibiotics. The antibiotic streptothricin (ST) possesses an amino sugar bound to an l-β-lysine (β-Lys) side chain via a peptide bond formed by a nonribosomal peptide synthetase (NRPS). BD-12, an analogue of ST, carries a glycine-derived side chain rather than β-Lys, and here, we describe the BD-12-biosynthetic gene cluster from Streptomyces luteocolor NBRC13826, which contains the orf11 gene encoding a novel tRNA-dependent peptide bond-forming enzyme. The unique Fem-like enzyme (Orf11) accepts the amino sugar as a substrate and mediates the peptide formation between the amino sugar intermediate and glycine. Our studies demonstrate that the structural diversity of the side chains of ST-related compounds in nature is generated via two distinct peptide bond-forming mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.