Abstract

During the first step of porphyrin biosynthesis in Archaea, most bacteria, and in chloroplasts glutamyl-tRNA reductase (GluTR) catalyzes the NADPH-dependent reduction of glutamyl-tRNA to glutamate-1-semialdehyde. Elements in tRNA(Glu) important for utilization by Escherichia coli GluTR were determined by kinetic analysis of 51 variant transcripts of E. coli Glu-tRNA(Glu). Base U8, the U13*G22**A46 base triple, the tertiary Watson-Crick base pair 19*56, and the lack of residue 47 are required for GluTR recognition. All of these bases contribute to the formation of the unique tertiary core of E. coli tRNA-(Glu). Two tRNA(Glu) molecules lacking the entire anticodon stem/loop but retaining the tertiary core structure remained substrates for GluTR, while further decreasing tRNA size toward a minihelix abolished GluTR activity. RNA footprinting experiments revealed the physical interaction of GluTR with the tertiary core of Glu-tRNA(Glu). E. coli GluTR showed clear selectivity against mischarged Glu-tRNA(Gln). We concluded that the unique tertiary core structure of E. coli tRNA(Glu) was sufficient for E. coli GluTR to distinguish specifically its glutamyl-tRNA substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call