Abstract
tRNA modifications are crucial for fine-tuning of protein translation. Queuosine (Q) modification of tRNAs is thought to modulate the translation rate of NAU codons, but its physiological role remains elusive. Therefore, we hypothesize that Q-tRNAs control those physiological processes involving NAU codon-enriched genes (Q-genes). Here, we report a novel bioinformatic strategy to predict Q-genes, revealing a widespread enrichment in functions, especially those related to biofilm formation and virulence in bacteria, and particularly in human pathogens. Indeed, we experimentally verified that these processes were significantly affected by altering the degree of tRNA Q-modification in different model bacteria, representing the first report of a general mechanism controlling biofilm formation and virulence in Gram-positive and Gram-negative bacteria possibly through the coordination of the expression of functionally related genes. Furthermore, we propose that changes in Q availability in a microbiome would affect its functionality. Our findings open the door to the control of bacterial infections and biofilm formation by inhibition of tRNA Q-modification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.