Abstract

In Arabidopsis thaliana, RNase P function, that is, endonucleolytic tRNA 5'-end maturation, is carried out by three homologous polypeptides ("proteinaceous RNase P" (PRORP) 1, 2 and 3). Here we present the first kinetic analysis of these enzymes. For PRORP1, a specificity constant (k(react)/K(m(sto))) of 3×10(6) M(-1) min(-1) was determined under single-turnover conditions. We demonstrate a fundamentally different sensitivity of PRORP enzymes to an Rp-phosphorothioate modification at the canonical cleavage site in a 5'-precursor tRNA substrate; whereas processing by bacterial RNase P is inhibited by three orders of magnitude in the presence of this sulfur substitution and Mg(2+) as the metal-ion cofactor, the PRORP enzymes are affected by not more than a factor of five under the same conditions, without significantly increased miscleavage. These findings indicate that the catalytic mechanism utilized by proteinaceous RNase P is different from that of RNA-based bacterial RNase P, taking place without a direct metal-ion coordination to the (pro-)Rp substituent. As Rp-phosphorothioate and inosine modification at all 26 G residues of the tRNA body had only minor effects on processing by PRORP, we conclude that productive PRORP-substrate interaction is not critically dependent on any of the affected (pro-)Rp oxygens or guanosine 2-amino groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.