Abstract

tRNA-derived fragments (tRFs) have been reported to have critical regulatory roles in osteoarthritis (OA). Recent studies have suggested that autophagy promotes the homeostasis of the extracellular matrix of chondrocytes in OA. However, the role of tRFs in posttranscriptional gene regulation during autophagy in OA is unknown. Therefore, we explored the role of tRF-5009A in the posttranscriptional gene regulation of autophagy and cartilage degeneration in OA. Using RNA sequencing, we identified tRF-5009A, the tRNAValCAC-derived fragment, in OA tissues and explored its expression by quantitative reverse transcription PCR and fluorescence in situ hybridization. We further investigated the relationship between the expression of tRF-5009A and clinical factors in OA. Chondrocytes were transfected with a tRF-5009A inhibitor or mimic to determine their functions, including in relation to autophagy and the cartilage phenotype. A rescue experiment and dual-luciferase reporter assay were conducted to determine whether the 3′-untranslated region (UTR) of mTOR contains a tRF-5009A-binding site. tRF-5009A was downregulated in the cartilage of OA knees, especially in damaged areas. mTOR was highly expressed in damaged cartilage and negatively correlated with the expression of tRF-5009A; transfection with a tRF-5009A inhibitor promoted the expression of mTOR and suppressed autophagy, whereas transfection with a tRF-5009A mimic had the opposite effect. A dual-luciferase reporter assay showed that tRF-5009A silenced the expression of mTOR by binding to its 3′-UTR. Thus, tRF-5009A regulates autophagy and cartilage degeneration in OA by targeting mTOR. In summary, these findings provide an additional tool for the clinical diagnosis and novel targeted therapy of OA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.