Abstract

Quantifying rainfall from remotely sensed data is crucial for regions where meteorological stations are scarce. This might be one of the only options for analysing rainfall patterns at different temporal and spatial scales in data-scarce environments, particularly in developing countries. The Tropical Rainfall Measuring Mission (TRMM) provides rainfall estimation over the tropics. Rainfall estimates from the TRMM satellite exhibit inaccuracies over topographically complex regions, thus warranting suitable corrections. Multi-resolution analysis (MRA) was applied to improve TRMM 3B42 daily rainfall estimation at 19 meteorological stations located over the Andean Plateau. The detailed signal from each meteorological station was added to the trend signal of each TRMM data cell. Comparing raw and corrected TRMM with gauged rainfall revealed that wavelet-based correction of TRMM 3B42 on average improved several metrics: entropy difference (15.45−1.32), determination coefficient (0.07−0.92), bias (0.68−1.01) and relative mean absolute error (RMAE, 0.86−0.59). The entropy difference of corrected TRMM and gauged rainfall was less than 5%, even when TRMM correction was performed with noise from a station located up to 565 km away from the TRMM cell. This entropy difference corresponded to an average bias of less than 10% in the rainfall estimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.