Abstract

In many temperate perennial plants, floral transition is initiated in the first growth season but the development of flower is arrested during the winter to ensure production of mature flowers in the next spring. The molecular mechanisms of the process remain poorly understood with few well-characterized regulatory genes. Here, a MADS-box gene, named as TrMADS3, was isolated from the overwintering inflorescences of Taihangia rupestris, a temperate perennial in the rose family. Phylogenetic analysis reveals that TrMADS3 is more closely related to the homologs of the FLOWERING LOCUS C lineage than to any of the other MIKC-type MADS-box lineages known from Arabidopsis. The TrMADS3 transcripts are extensively distributed in inflorescences, roots, and leaves during the winter. In controlled conditions, the TrMADS3 expression level is upregulated by a chilling exposure for 1 to 2 weeks and remains high for a longer period of time in warm conditions after cold treatment. In situ hybridization reveals that TrMADS3 is predominantly expressed in the vegetative and reproductive meristems. Ectopic expression of TrMADS3 in Arabidopsis promotes seed germination on the media containing relatively high NaCl or mannitol concentrations. These data indicate that TrMADS3 in a perennial species might have its role in both vegetative and reproductive meristems in response to cold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.