Abstract
Octopine-type Ti plasmids of Agrobacterium tumefaciens require the quorum-sensing proteins TraR and TraI and the diffusible pheromone 3-oxooctanoyl homoserine lactone (AAI) to regulate genes required for conjugal transfer. TraR activity is inhibited by a protein called TrlR, which closely resembles amino acids 1-181 of TraR but is truncated as a result of a shift in the reading frame at codon 182. This frameshift does not affect synthesis of the amino-terminal domain, which is thought to bind autoinducer and mediate protein dimerization, but abolishes translation of the carboxyl-terminal, DNA-binding domain. In this study, we show that TrlR, like TraR, requires AAI for solubility when overexpressed in Escherichia coli. TrlR bound one molecule of AAI per protein monomer, supporting the prediction that the amino-terminal domain of TraR contains the AAI binding site. Purified TrlR blocked TraR for both specific DNA binding and transcription of a tra promoter, supporting previous studies performed with whole cells. When TrlR and a TraR fusion protein were co-expressed in E. coli, these proteins readily formed heterodimeric complexes that were inactive in DNA-binding activity. These data support the hypotheses that (i) the amino-terminal half of TraR binds AAI and mediates protein dimerization; (ii) both DNA-binding domains in a TraR dimer are required for stable DNA binding; and (iii) TrlR blocks TraR by direct protein-protein interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.