Abstract
The prediction of the exchange rate time series has been quite challenging but is an essential process. This is as a result of the inherent noise and the volatile behavior in these series. Time series analysis models such as ARIMA have been used for this purpose. However, these models are limited due to the fact that they are not able to explain the non-linearity as well as the stochastic properties of foreign exchange rates. In order to perform a more accurate exchange rate prediction, deep-learning methods have been employed withremarkable rates of success. In this paper, we apply the Long-Short Term Memory Neural Network to predict the USD/TL exchange rate in Turkey. The result from this paper indicates that the Long-Short Term Memory Neural Network deep learning method gives higher prediction accuracy compared to the Auto Regressive Integrated Moving Average and the Multilayer Perception Neural Network models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mehmet Akif Ersoy Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.