Abstract

BackgroundDuring development, gustatory (taste) neurons likely undergo numerous changes in morphology and expression prior to differentiation into maturity, but little is known this process or the factors that regulate it. Neuron differentiation is likely regulated by a combination of transcription and growth factors. Embryonically, most geniculate neuron development is regulated by the growth factor brain derived neurotrophic factor (BDNF). Postnatally, however, BDNF expression becomes restricted to subpopulations of taste receptor cells with specific functions. We hypothesized that during development, the receptor for BDNF, tropomyosin kinase B receptor (TrkB), may also become developmentally restricted to a subset of taste neurons and could be one factor that is differentially expressed across taste neuron subsets.MethodsWe used transgenic mouse models to label both geniculate neurons innervating the oral cavity (Phox2b+), which are primarily taste, from those projecting to the outer ear (auricular neurons) to label TrkB expressing neurons (TrkBGFP). We also compared neuron number, taste bud number, and taste receptor cell types in wild-type animals and conditional TrkB knockouts.ResultsBetween E15.5-E17.5, TrkB receptor expression becomes restricted to half of the Phox2b + neurons. This TrkB downregulation was specific to oral cavity projecting neurons, since TrkB expression remained constant throughout development in the auricular geniculate neurons (Phox2b-). Conditional TrkB removal from oral sensory neurons (Phox2b+) reduced this population to 92% of control levels, indicating that only 8% of these neurons do not depend on TrkB for survival during development. The remaining neurons failed to innervate any remaining taste buds, 14% of which remained despite the complete loss of innervation. Finally, some types of taste receptor cells (Car4+) were more dependent on innervation than others (PLCβ2+).ConclusionsTogether, these findings indicate that TrkB expression and dependence divides gustatory neurons into three subpopulations: 1) neurons that always express TrkB and are TrkB-dependent during development (50%), 2) neurons dependent on TrkB during development but that downregulate TrkB expression between E15.5 and E17.5 (41%), and 3) neurons that never express or depend on TrkB (9%). These TrkB-independent neurons are likely non-gustatory, as they do not innervate taste buds.

Highlights

  • During development, gustatory neurons likely undergo numerous changes in morphology and expression prior to differentiation into maturity, but little is known this process or the factors that regulate it

  • We hypothesized that following this critical period for neuron survival, only a subset of the neurons projecting to the anterior two-thirds of the tongue would continue to express tropomyosin kinase B receptor (TrkB) in adulthood

  • The ligand for TrkB, brain derived neurotrophic factor (BDNF), is expressed in a subset of taste receptor cells, and BDNF removal reduces some but not all of the nerve fibers innervating taste buds [21, 22]. These findings suggest that by adulthood, TrkB expression may be limited to a subset of taste neurons and BDNF-TrkB signaling functions to maintain innervation of this subset, but not others [21, 22]

Read more

Summary

Introduction

Gustatory (taste) neurons likely undergo numerous changes in morphology and expression prior to differentiation into maturity, but little is known this process or the factors that regulate it. BDNF expression in taste buds acts as a cue for TrkB+ fibers to innervate taste organs [5,6,7,8,9,10,11,12] Both this target innervation process and neuron survival occur during a critical developmental period [8, 10]. After this critical period, BDNF is downregulated in the taste bud, but continues to be expressed in a subpopulation of taste receptor cells [13, 14]. This expression change suggests that BDNF may play a different role/ s in later developmental stages and adulthood

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call