Abstract

In recent years, there has been a surge in interest in investigating the mechanisms underlying memory consolidation. However, our understanding of the behavioural tagging (BT) model and its establishment in diverse brain regions remains limited. This study elucidates the contributions of the anterior cingulate cortex (ACC) and hippocampus in the formation of long-term memory (LTM) employing behaviour tagging as a model for studying the underlying mechanism of LTM formation in rats. Existing knowledge highlights a protein synthesis-dependent phase as imperative for LTM. Brain-derived neurotrophic factor (BDNF) stands as a pivotal plasticity-related protein (PRP) in mediating molecular alterations crucial for long-term synaptic plasticity and memory consolidation. Our study offers evidence suggesting that tropomyosin receptor kinase B (TrkB), the receptor of BDNF, may act as a combined "behavioural tag/PRP". Interfering with the expression of these molecules resulted in impaired LTM after 24h. Furthermore, augmenting BDNF expression led to an elevation in Arc protein levels in both the ACC and hippocampus regions. Introducing novelty around weak inhibitory avoidance (IA) training resulted in heightened step-down latencies and expression of these molecules, respectively. We also demonstrate that the increase in Arc expression relies on BDNF synthesis, which is vital for the memory consolidation process. Additionally, inhibiting BDNF using an anti-BDNF function-blocking antibody impacted Arc expression in both the ACC and hippocampus regions, disrupting the transformations from labile to robust memory. These findings mark the initial identification of a "behavioural tag/PRP" combination and underscore the involvement of the TrkB-BDNF-Arc cascade in the behavioural tagging model of learning and memory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call