Abstract

To investigate the potential of Tropomyosin receptor kinase A (TrkA) for the treatment of interstitial cystitis/ bladder pain syndrome (IC/BPS). Sixty-four female rats were randomly assigned to the control and cyclophosphamide (CYP) groups. Quantitative reverse transcription polymerase chain reaction was utilized to detect the mRNA level of TrkA. Western blot analysis was used to measure the protein levels of TNF-α, IL-6, and TrkA. Immunostaining was used to detect the expression of TrkA in bladder sections. Contractility studies and urodynamic measurements were utilized to test the spontaneous contractions of detrusor muscle strips and the global bladder activity, respectively. Rat models of chronic cystitis were successfully established. The mRNA and protein levels of TrkA were significantly increased in the bladders of CYP-treated rats. Also, results of immunohistochemical staining and immunofluorescence staining showed that increased TrkA expression in the CYP group was mainly observed in the urothelium layer and bladder interstitial Cajal-like cells (ICC-LCs) but not in the detrusor smooth muscle cells. The specific inhibitor of TrkA, GW441756 (10 μM), significantly suppressed the robust spontaneous contractions of detrusor muscle strips in the CYP group and alleviated the overall bladder overactivity of CYP-treated rats. However, the inhibitory effects of GW441756 (10 μM) on the spontaneous contractions of detrusor muscle strips and the overall bladder activity were eliminated after pretreatments with the specific blocker of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, ZD7288 (50 μM). Our results suggested that increased TrkA expression during chronic cystitis promotes the development of bladder overactivity by targeting the HCN channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.