Abstract

Maize (Zea mays L.) is a tropical crop and chilling temperatures (below 15 ºC) cause growth retardation and yield losses. The development of chilling-tolerant maize varieties is a main goal of plant breeders in order to produce maize under cool climates. Hybrids are more vigorous then their parents, including being more tolerant to diverse stresses. However, stress screening is an obstacle. This study aims to evaluate chilling stress tolerance of Turkish maize hybrids and determine suitable indicators for selection of the most tolerant hybrid. Nine hybrids were subjected to low night temperature following germination until the third leaf was fully enlarged. Hybrids were evaluated at morphological, cellular and physiological levels by comparison with control seedlings. The data were analyzed by kinematic analysis and statistical tools. The findings showed that all indicators significantly differed among the hybrids. Indicators such as leaf elongation rate (LER), mature cell length (MCL) and cell production (CP) increase our understanding of stress tolerance by making connections between phenotype and cellular functions. Fresh and dry weight of shoot (SFW and SDW) were observed to be useful indicators to uncover relatedness between growth and the physiological stress response of seedlings. In conclusion, this study defines beneficial indicators for breeding studies at early seedling screening of maize hybrids which are displayed genetic variation for chilling stress tolerance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call