Abstract
There is a significant public health concern regarding medical diagnosis errors, which are a major cause of mortality. Identifying the root cause of these errors is challenging, and even if one is identified, implementing an effective treatment to prevent their recurrence is difficult. Optimization-based analysis in healthcare data management is a reliable method for improving diagnostic precision. Analyzing healthcare data requires pre-classification and the identification of precise information for precision-oriented outcomes. This article introduces a Cooperative-Trivial State Fuzzy Processing method for significant data analysis with possible derivatives. Trivial State Fuzzy Processing operates on the principle of fuzzy logic-based processing applied to structured healthcare data, focusing on mitigating errors and uncertainties inherent in the data. The derivatives are aided by identifying and grouping diagnosis-related and irrelevant data. The proposed method mitigates invertible derivative analysis issues in similar data grouping and irrelevance estimation. In the grouping and detection process, recent knowledge of the diagnosis progression is exploited to identify the functional data for analysis. Such analysis improves the impact of trivial diagnosis data compared to a voluminous diagnosis history. The cooperative derivative states under different data irrelevance factors reduce trivial state errors in healthcare big data analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.