Abstract

We present numerical approximations of the 3D steady state Navier-Stokes equations in velocity-pressure formulation using trivariate splines of arbitrary degree d d and arbitrary smoothness r r with r > d r>d . Using functional arguments, we derive the discrete Navier-Stokes equations in terms of B B -coefficients of trivariate splines over a tetrahedral partition of any given polygonal domain. Smoothness conditions, boundary conditions and the divergence-free condition are enforced through Lagrange multipliers. The pressure is computed by solving a Poisson equation with Neumann boundary conditions. We have implemented this approach in MATLAB and present numerical evidence of the convergence rate as well as experiments on the lid driven cavity flow problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.