Abstract

The comprehension of activity and selectivity origins of the electrooxidation of organics is a crucial knot for the development of a highly efficient energy conversion system that can produce value-added chemicals on both the anode and cathode. Here, we find that the potential-retaining trivalent nickel in NiOOH (Fermi level, -7.4 eV) is capable of selectively oxidizing various primary alcohols to carboxylic acids through a nucleophilic attack and nonredox electron transfer process. This nonredox trivalent nickel is highly efficient in oxidizing primary alcohols (methanol, ethanol, propanol, butanol, and benzyl alcohol) that are equipped with the appropriate highest occupied molecular orbital (HOMO) levels (-7.1 to -6.5 eV vs vacuum level) and the negative dual local softness values (Δsk, -0.50 to -0.19) of nucleophilic atoms in nucleophilic hydroxyl functional groups. However, the carboxylic acid products exhibit a deeper HOMO level (<-7.4 eV) or a positive Δsk, suggesting that they are highly stable and weakly nucleophilic on NiOOH. The combination (HOMO, Δsk) is useful in explaining the activity and selectivity origins of electrochemically oxidizing alcohols to carboxylic acid. Our findings are valuable in creating efficient energy conversions to generate value-added chemicals on dual electrodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call