Abstract

Conflicts between structural requirements for carrying out different ecologically relevant functions may result in a compromise phenotype that maximizes neither function. Identifying and evaluating functional trade‐offs may therefore aid in understanding the evolution of organismal performance. We examined the possibility of an evolutionary trade‐off between aquatic and terrestrial locomotion in females of European species of the newt genus Triturus. Biomechanical models suggest a conflict between the requirements for aquatic and terrestrial locomotion. For instance, having an elongate, slender body, a large tail, and reduced limbs should benefit undulatory swimming, but at the cost of reduced running capacity. To test the prediction of an evolutionary trade‐off between swimming and running capacity, we investigated relationships between size‐corrected morphology and maximum locomotor performance in females of ten species of newts. Phylogenetic comparative analyses revealed that an evolutionary trend of body elongation (increasing axilla‐groin distance) is associated with a reduction in head width and forelimb length. Body elongation resulted in reduced maximum running speed, but, surprisingly, also led to a reduction in swimming speed. The evolution of longer tails was associated with an increase in maximal swimming speed. We found no evidence for an evolutionary trade‐off between aquatic and terrestrial locomotor performance, probably because of the unexpected negative effect of body elongation on swimming speed. We conclude that the idea of a design conflict between aquatic and terrestrial locomotion, mediated through antagonistic effects of body elongation, does not apply to our model system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.