Abstract

The protist parasite Tritrichomonas foetus displays a pear-shaped (PS) and a pseudocystic or endoflagellar form (EFF). Here, we characterised the ecto-phosphatase activity on the surface of EFF and compare its biochemical properties to that of the PS regarding rate of substrate hydrolysis, pH activation profile and sensitivity to well-known phosphatases inhibitors. Two strains exhibiting low- and high-cytotoxicity were used. The enzyme activities of PS and EFF exhibited similar characteristics of protein tyrosine phosphatases (PTP). However, the ecto-phosphatase activities for both forms presented distinct kinetic parameters and different inhibition patterns by PTP inhibitors, suggesting the presence of distinct ecto-enzyme activities between PS and EFF, as well, between both strains. Ultrastructural cytochemistry confirmed the differential distribution of the ecto-phosphatase activity during the EFF transformation. An increase in the percentage of the EFF resulted in a proportional increase in the ecto-phosphatase activity. During EFF reversion, ecto-phosphatase activity decreased and was restored to the level found in the parasites before EFF induction. PS and EFF from the high-cytotoxic strain exhibited higher ecto-phosphatase activities than PS and EFF from the low-cytotoxic strain, respectively. In both strains, the EFF was more cytotoxic and exhibited higher ecto-phosphatase activity when compared to the PS. A large part of the ecto-phosphatase activities of EFF from both strains and PS from the high-cytotoxic strain was irreversibly inhibited when the parasites were pre-treated with a specific antibody against amoebic PTP (anti-EhPRL). Immunoreaction assays revealed that the anti-EhPRL antibody cross-reacted with a 24-kDa protein differentially expressed on the cell surface of PS and EFF T. foetus. A positive correlation was observed between the surface expression of 24-kDa protein and ecto-phosphatase activity. Irreversible inhibition of a part of the ecto-phosphatase activities partially blocked the EFF induction and the cytotoxic effects exerted by both forms. These results suggest that the ecto-phosphatase activities could play a role on the EFF transformation and cytotoxicity of T. foetus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call