Abstract

Ruptures of the anterior cruciate ligament (ACL) are still associated with high rates of long-term complications, even in patients undergoing modern, state-of-the-art replacement. Tissue-engineering approaches have been shown to be of value in improving treatment of ACL ruptures. However, the success of tissue-engineering procedures depends on the choice of an appropriate biomaterial. Decellularized ACL tissue potentially combines the structural composition of the targeted tissue with a reduced risk of graft rejection or disease transmission. In this study, we tested the effectiveness of currently available decellularization methods based on TRITON-X, sodium dodecyl sulfate (SDS), and trypsin. After identifying the most effective decellularization method, the capacity for reseeding with ACL fibroblasts was studied. All decellularization protocols reduced DNA content, with TRITON-X treatment having the greatest effect. Concurrently, decellularization did not affect tissue collagen or total protein content, but did decrease glycosaminoglycan content. TRITON-X also resulted the least glycosaminoglycan depletion. Porcine ACL tissue after decellularization with TRITON-X could be successfully reseeded with human ACL fibroblasts as demonstrated by steady DNA content and increasing pro-collagen expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.