Abstract
During the period from 2019 to 2021, a series of experiments were carried out to study the uptake of tritium by crops in an area heavily contaminated with atmospheric tritium oxide (HTO), at the former Semipalatinsk test site in Kazakhstan. A quantitative assessment is given of the tritium uptake by typical crops (lettuce, tomatoes, peppers and beans) cultivated all over Kazakhstan in the case of a short-term tritium oxide vapor exposure. The plant samples were collected during and after exposure and analyzed for the tritium concentration in two chemical forms: tissue-free water tritium (TFWT) and organically bound tritium (OBT). During the entire series of experiments, the tritium concentration in free water from leaves and ambient air was of the same order of magnitude. The tissue water tritium concentrations of stems and edible parts was 1 to 2 orders of magnitude lower than in the surrounding air. The average value of the TFWT/HTOatm ratio in the leaves and the edible part was (0.73±0.2) and (0.04±0.002), respectively. The organically-bound tritium concentration is 1-2 orders of magnitude lower than the tissue water tritium and ambient air concentrations. Under aerial tritium oxide uptake, the distribution of tritium in non-leafy crops was as follows: leaf-stem-fruit (in decreasing order). After exposure, a non-significant amount of tritium is firmly retained in plants for a long time. The tissue water tritium concentrations correlate closely with atmospheric tritium oxid (r = 0.76), correlate weakly with temperature (r = 0.43) and relative humidity (r = -0.43), and correlate moderately with solar radiation intensity (r = 0.56). There was no reliable correlation between the concentration of tritium in organic matter and in ambient air. The concentration of tritium in the free water of leaves is closely correlated with the concentration in the free water of the stems (r = 0.95) and fruits (r = 0.78). The organically-bound tritium concentration in leaves is closely correlated with the organically-bound tritium concentration in stems (r = 0.99) and fruits (r = 98). The results of the study should be considered when evaluating the impact of tritium oxide emissions on the population living near nuclear power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.