Abstract
In the Thorium-Based Molten Salt Reactor (TMSR), tritium is produced at a high rate, which results in huge difficulties regarding tritium control. Tritium distributions in a 2-MW liquid-fueled molten salt experimental reactor (TMSR-LF1) were simulated with the TMSR–Tritium Transport Analysis Code (TTAC) (TMSR-TTAC) that was developed for analysis of tritium behaviors in the TMSR. The simulation for normal operation showed that about 60% of the tritium would permeate through the metal walls of the system, 25% of the tritium was removed by the purge gas system, and 15% of the tritium was absorbed on the core graphite. In addition, the effects on tritium distribution of the chemical-redox potential in fuel salt, the tritium permeation behavior through the metal walls, and various tritium removal methods in the TMSR-LF1 have also been simulated. The simulation results based on those conditions are analyzed in this paper to improve the knowledge of tritium behavior in the TMSR-LF1 and to provide reliable methods and strategies for tritium control in the TMSR system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.