Abstract

Recently, Tritium Plasma Experiment (TPE), a unique high-flux linear plasma device that can handle beryllium, tritium and neutron-irradiated plasma facing materials, has undergone major upgrades in its electrical and control systems. The upgrade has improved worker occupational safety, and enhanced TPE plasma performance to better simulate extreme plasma-material-interaction (PMI) conditions expected in ITER, Fusion Nuclear Science Facility (FNSF) and demonstration fusion power plant (DEMO). The PMI determines a boundary condition for diffusing tritium into bulk plasma-facing components (PFCs) and plays critical role in in-vessel and ex-vessel safety assessments. Enhancing surface capabilities for tritium-contaminated and radioactive samples is crucial for the PMI sciences in burning plasma long pulse operation. The TPE Upgrade and improvement of surface diagnostic capabilities for tritium-contaminated and radioactive samples at STAR facility help enhance tritium and nuclear PMI sciences for the development of reliable PFCs and tritium fuel cycle in ITER, FNSF and DEMO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.