Abstract

The complexes of Fe(II), Mn(II) and Ni(II) with a combination of a Schiff base, nitrogen-donor ligand or macrocyclic ligand and trithiocyanuric acid (ttcH3) were prepared and characterized by elemental analysis and spectroscopies. Crystal and molecular structures of the iron complex of composition [Fe(L1)](ttcH2)(ClO4)·EtOH·H2O (1), where L1 is Schiff base derived from tris(2-aminoethyl)amine and 2-pyridinecarboxaldehyde, were solved. It was found that the Schiff base is coordinated to the central iron atom by six nitrogens forming deformed octahedral arrangement, whereas trithiocyanurate(1-) anion, perchlorate and solvent molecules are not coordinated. The X-ray structure of the Schiff base sodium salt is also presented and compared with the iron complex. The anticholinesterase activity of the complexes was also studied.

Highlights

  • The sodium salt of trithiocyanuric acid (ttcH3 = trithiocyanuric acid, named as2,4,6-trimercapto-1,3,5-triazine (TMT)) readily forms precipitates with heavy metal ions and that is why it is used for removal of heavy metal ions from industrial wastewater

  • We expected the formation of a binuclear or polynuclear complex with a trithiocyanurate bridge, only a mononuclear Fe(II) complex was formed

  • Its composition was proposed on the base of elemental analysis and unambiguously confirmed by single crystal X-ray analysis

Read more

Summary

Introduction

Removal of residual palladium and its compounds from reaction mixtures in preparation of drugs, in which palladium is used as a catalyst, is very important [5,6]. Biological activity of trithiocyanuric compound was evaluated as it can serve as a ligand of Toxoplasma gondii orotate phosphoribosyltransferase [7,8,9]. This enzyme is necessary for replication of the parasitic protozoan Toxoplasma gondii, which causes the disease toxoplasmosis. In addition to the structural, electrochemical and spectral study, interaction of the complexes with the circular and linear forms of p-Bluescript DNA was reported. The Ru(II) complexes reduced the fluorescence intensity of both circular and linear DNA.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.