Abstract
Loquat leaf extract (LLE) is a mixture rich in terpenoids, and has broad biological activities including the inhibition of cancer cell growth. The exact metabolic mechanism of this growth inhibiting effect is not known. We investigated the cellular metabolic effect of LLE, and ursolic acid (UA) on pancreatic cancer cells using a 13C carbon tracing technology. MIA PaCa-2 cells were cultured in medium containing [1, 2 13C2]-glucose in the presence of either LLE (50 µg/ml), UA (50 µM), or metformin (1 mM). The mass isotopomer distribution of glucose, lactate, ribose, glutamate and palmitate in medium was determined. Based on the mass isotopomer distribution in metabolites we were able to determine individual 13C enrichment (∑M × n) and the minimum fraction of new synthesis (1-M0) in each metabolite. Several flux ratios of energy metabolic pathways were calculated from the mass isotopomer ratios of these metabolites. We found that tumor viability was suppressed by LLE and UA in a dose dependent manner, and the tumor-inhibiting effect was associated with the changes in oxidative/non-oxidative pentose (Ox/Non-ox) and pyruvate dehydrogenase/isocitrate dehydrogenase (PDH/ICDH) flux ratios resulting in decreased new syntheses of ribose and fatty acids. Metabolic homeostasis (balance of fluxes) in cancer cells is maintained through the regulation of metabolic fluxes by oncogenes and tumor-suppressor genes. Treatment of MIA PaCa-2 cells by LLE, UA and metformin likely altered key metabolic flux ratios affecting metabolic homeostasis required for energy and macromolecular production in tumor growth.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.