Abstract

Abstract The reaction of tri(tert-butyl)plumbyl-lithium (1) with various phosphorus chlorides was studied. With diphenyl- and amino(phenyl)phosphorus chlorides the formation of hexa(tertbutyl) diplumbane (2) and tetraphenyldiphosphane (3) or the respective 1,2-bis(am ino)-1,2-diphenyl- diphosphanes [e. g. 5: amino = PhCH2(tBu)N] was dominant. The presence of at least one tert-butyl group at the phosphorus atom gave access to tri(tert-butyl)plumbyl-di(tert-butyl) phosphane (4) and to tri(tert-butyl)plumbyl-amino(tert-butyl)phosphanes [amino = tBu(H)N (6), Me(Ph)N (7), PhCH2(Me)N (8), PhCH2(tBu)N (9)] via the reaction of 1 with the corresponding phosphorus chlorides. Side products were again 2 and the corresponding diphosphanes, unidentified compounds, and in two cases, bis(phosphanyl)-di(tert-butyl)plumbanes [phosphanyl = tBu(H)N(tBu)P (10), Me(Ph)N(tBu)P (11)]. Trimethylplumbyl-benzyl(methyl)- amino(tert-butyl)phosphane (12) was prepared for comparison. All compounds were characterized by their 1H , 13C, 15N (9 ),31P and 207Pb NMR data. The coupling constants 1J(207Pb,31P) are large and negative, whereas the coupling constants 1J(207Pb, 13C) are small and can be of either sign. The coupling constants 2J(31P-N-13C) of 6 - 12 indicate a preferred conformation of the substituents at phosphorus and nitrogen

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.