Abstract

Four octahedral complexes of the type SnCl4.2L [L = (R2N)3P(E): E = Se; R = Me(1), Et(2) and E = S; R = Me(3), Et(4)] have been studied in solution by multinuclear (31P, 77Se, and 119Sn) NMR spectroscopy. 31P and 77Se NMR data were informative of changes associated with complex formation. The solution structure of the complexes was confirmed by their 119Sn NMR spectra that showed two triplet features for each complex, attributed to a mixture of the expected cis and trans isomers. The triplet signal is due to the coupling with two equivalent phosphorus atoms, consistent with an octahedral geometry around the tin center. In addition, density functional theory (DFT)/B3LYP calculations have been carried out to support the interpretations of NMR data. The results are discussed and compared with those reported for related complexes.GRAPHICAL ABSTRACT

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call