Abstract

Abstract The effects of tris(pentafluorophenyl) borane (TPFPB) additive in electrolyte at the LiFePO4 cathode on the high temperature capacity fading were investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), cyclability, SEM and Fourier transform infrared (FTIR). According to the study results, tris(pentafluorophenyl) borane has the ability to improve the cycle performance of LiFePO4 at high temperature. LiFePO4 electrodes cycled in the electrolyte without the TPFPB additive show a significant increase in charge transfer resistance by EIS analysis. SEM and FTIR disclose evidence of surface morphology change and solid electrolyte interface (SEI) formation. FTIR investigation shows various functional groups are found on the cathode material surface after high temperature cycling tests. The results showed an obvious improvement of high temperature cycle performance for LiFePO4 cathode material due to the TPFPB additive. The observed improved cycling performance and improved lithium ion transport are attributed to decreased LiF content in the SEI film.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call