Abstract

A series of [4]pseudorotaxanes composed of three-way axle threads based on the cyclotriguaiacylene family of crown-shaped cavitands and three threaded macrocyclic components has been achieved. These exploit the strong affinity for electron-poor alkyl-pyridinium units to reside within the electron-rich cavity of macrocycles, in this case dimethoxypillar[5]arene (DMP). The branched [4]pseudorotaxane assemblies {(DMP)3∙L}3+,where L = N-alkylated derivatives of the host molecule (±)-tris-(isonicotinoyl)cyclotriguaiacylene, were characterised by NMR spectroscopy and mass spectrometry, and an energy-minimised structure of {(DMP)3∙(tris-(N-propyl-isonicotinoyl)cyclotriguaiacylene)}3+ was calculated. Crystal structures of N-ethyl-isonicotinoyl)cyclotriguaiacylene hexafluorophosphate and N-propyl-isonicotinoyl)cyclotriguaiacylene hexafluorophosphate each show ‘hand-shake’ self-inclusion motifs occurring between the individual cavitands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.