Abstract
Silicon carbonitride layers have been obtained by chemical deposition from the gas phase with thermal (LPCVD) and plasma (PECVD) activation of the gas mixture of helium with the new volatile siliconorganic compound tris(diethylamino)silane (Et 2N)3SiH (TDEAS) in the temperature region 373–1173 K. Thermodynamic simulation of the deposition processes from the gas mixture (TDEAS + He) in the temperature interval 300–1300 K and pressure interval P tot 0 from 1 × 10−2 to 10 mm Hg has revealed the possibility of varying the equilibrium composition of the condensed phase depending on the synthesis temperature and the composition of the initial gas mixture. Physicochemical and functional properties of obtained layers were studied by complex of modern methods. It has been established that the chemical composition of the silicon carbonitride layers obtained by the PECVD method, depending on the deposition conditions, approaches that of silicon oxynitride or nitride, and the composition of those obtained by the LPCVD method approaches that of silicon carbide. The presence of nanocrystals with a phase composition close to the standard α-Si3N4 phase and of carbon inclusions has been found in the layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.