Abstract

The synthesis and theoretical-experimental characterization of a novel diprotanated decavanadate is presented here due to our search for novel anticancer metallodrugs. Tris(2-pyridylmethyl)amine (TPMA), which is also known to have anticancer activity in osteosarcoma cell lines, was introduced as a possible cationic species that could act as a counterpart for the decavanadate anion. However, the isolated compound contains the previously reported vanadium (V) dioxido-tpma moieties, and the decavanadate anion appears to be diprotonated. The structural characterization of the compound was performed by infrared spectroscopy and single-crystal X-ray diffraction. In addition, DFT calculations were used to analyze the reactive sites involved in the donor-acceptor interactions from the molecular electrostatic potential maps. The level of theory mPW1PW91/6–31G(d)-LANL2DZ and ECP = LANL2DZ for the V atom was used. These insights about the compounds’ main interactions were supported by analyzing the noncovalent interactions utilizing the AIM and Hirshfeld surfaces approach. Molecular docking studies with small RNA fragments were used to assess the hypothesis that decavanadate’s anticancer activity could be attributed to its interaction with lncRNA molecules. Thus, a combination of three potentially beneficial components could be evaluated in various cancer cell lines.

Highlights

  • Polyoxometalates (POM) is a special class of discrete, anionic metal-oxygen clusters considered soluble oxide fragments (Bijelic et al, 2018)

  • The H-bonds between one oxygen atom of the dioxidovanadium(V)tpma and the hydrogen of the protonated decavanadate are located in intermediate regions of electron density, indicating important noncovalent interactions

  • In the [VO2(tpma)]+ moieties, negative charge density regions are observed on dioxidovanadium and positive charge on tmpa groups

Read more

Summary

Introduction

Polyoxometalates (POM) is a special class of discrete, anionic metal-oxygen clusters considered soluble oxide fragments (Bijelic et al, 2018). The low toxicity is due to the redox properties obtained by coupling the redox-active ligand 3,5-di (tert-butyl) catechol with the hydrolytic stability of the [VO(HSHED)dtb], which prevents vanadate and catechol ligand formation. These findings imply that protecting cationic vanadium species may help to increase activity while decreasing toxicity. Recent research on eleven vanadium species, compounds, and materials in human melanoma cell lines has revealed intriguing antitumor properties in response to a variety of effects, including: 1) cell viability; 2) cell morphology changes and apoptosis; 3) cell-cycle arrest; 4) ROS production; 5) mitochondrial dysfunction; 6) protein expression; and 7) in vivo tumor regression and survival rates. Researchers should investigate vanadium-containing POV-based nanohybrids rather than pure POVs (Aureliano et al, 2021)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.