Abstract

The coordination behavior of tris(2-pyridyl)arsine (Py3As) has been studied for the first time on the example of the reactions with CuI, CuBr and AgClO4. When treated with CuI in CH2Cl2 medium, Py3As unexpectedly affords the scorpionate complex [Cu(Py3As)I]∙CH2Cl2 only, while this reaction in MeCN selectively leads to the dimer [Cu2(Py3As)2I2]. At the same time, the interaction of CuBr with Py3As exclusively gives the dimer [Cu2(Py3As)2Br2]. It is interesting to note that the scorpionate [Cu(Py3As)I]∙CH2Cl2, upon fuming with a MeCN vapor (r.t., 1 h), undergoes quantitative dimerization into the dimer [Cu2(Py3As)2I2]. The reaction of Py3As with AgClO4 produces complex [Ag@Ag4(Py3As)4](CIO4)5 featuring a Ag-centered Ag4 tetrahedral kernel. At ambient temperature, the obtained Cu(I) complexes exhibit an unusually short-lived photoluminescence, which can be tentatively assigned to the thermally activated delayed fluorescence of (M + X) LCT type (M = Cu, L = Py3As; X = halogen). For the title Ag(I) complexes, QTAIM calculations reveal the pronounced argentophilic interactions for all short Ag∙∙∙Ag contacts (3.209–3.313 Å).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.