Abstract

AbstractMesoporous films of platinized carbon nanotube–zirconia–Nafion composite have been used for the immobilization of tris(2,2′‐bipyridyl)ruthenium (II) (Ru(bpy)32+) on an electrode surface to yield a solid‐state electrogenerated chemiluminescence (ECL) sensor. The composite films of Pt–CNT–zirconia–Nafion exhibit much larger pore diameter (3.55 nm) than that of Nafion (2.82 nm) and thus leading to much larger ECL response for tripropylamine (TPA) because of the fast diffusion of the analyte within the films. Due to the conducting and electrocatalytic features of CNTs and Pt nanoparticles, their incorporation into the zirconia–Nafion composite films resulted in the decreased electron transfer resistance within the films. The present ECL sensor based on the Pt–CNT–zirconia–Nafion gave a linear response (R2=0.999) for TPA concentration from 3.0 nM to 1.0 mM with a remarkable detection limit (S/N=3) of 1.0 nM, which is much lower compared to those obtained with the ECL sensors based on other types of sol‐gel ceramic–Nafion composite films such as silica–Nafion and titania–Nafion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.