Abstract

Triptycene-based micorporous polymer was functionalized with thioamide moieties via post-polymerization using phosphorus pentasulfide as a thionating agent in the presence of sodium sulfite. Gas adsorption experiments indicate that the modification leads to a reduction in the BET surface area of the polymer, from 1640 m2 g-1 for the parent TMP to 207 m2 g-1 on 74% conversion of nitrile to thioamide, while the resulting micorporous polymer possesses high H2 uptake capacity, reaching 101.1 cm3/g-1 (0.9 wt%) at 1.0 bar and 77 K, especially along with high selectivity towards H2 over CO2, N2 and CH4. The micorporous polymer presents a promising potential as efficient adsorbents in clean energy applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.