Abstract

Converging lines of evidence suggest that neuroinflammatory processes may account for the progressive death of dopaminergic neurons in Parkinson's disease (PD). Therefore, anti-inflammatory strategies have attracted much interest for their potential to prevent further deterioration of PD. Our previous study showed that triptolide, a traditional Chinese herbal compound with anti-inflammatory and immunosuppressive properties, protected dopaminergic neurons from lipopolysaccharide (LPS)-induced damage in primary embryonic midbrain cell cultures. To examine further if triptolide can protect dopaminergic neurons from inflammation-mediated damage in vivo, microglial activation and injury of dopaminergic neurons were induced by LPS intranigral injection, and the effects of triptolide treatment on microglial activation and survival ratio and function of dopaminergic neurons were investigated. Our results demonstrated that microglial activation induced by a single intranigral dose of 10 mug of LPS reduced the survival ratio of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the substantia nigra pars compacta (SNpc) to 29% and the content of dopamine (DA) in striatum to 37% of the non-injected side. Intriguingly, treatment with triptolide of 5 mug/kg for 24 days once per day dramatically improved the survival rate of TH-ir neurons in the SNpc to 79% of the non-injected side. Meanwhile, treatment with triptolide of 1 or 5 mug/kg for 24 days once per day significantly improved DA level in striatum to 70% and 68% of the non-injected side, respectively. Complement receptor 3 (CR3) immunohistochemical staining revealed that triptolide treatment potently inhibited LPS-elicited deleterious activation of microglia in SNpc. The excessive production of cytokines, such as tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta, was significantly abolished by triptolide administration. These results, together with our previous data in vitro, highly suggest the effectiveness of triptolide in protecting dopaminergic neurons against inflammatory challenge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.