Abstract
Increasing evidence suggests systemic inflammation-caused skeletal muscle atrophy as a major clinical feature of cachexia. Triptolide obtained from Tripterygium wilfordii Hook F possesses potent anti-inflammatory and immunosuppressive effects. The present study aims to evaluate the protective effects and molecular mechanisms of triptolide on inflammation-induced skeletal muscle atrophy. The effects of triptolide on skeletal muscle atrophy were investigated in LPS-treated C2C12 myotubes and C57BL/6 mice. Protein expressions and mRNA levels were analysed by western blot and qPCR, respectively. Skeletal muscle mass, volume and strength were measured by histological analysis, micro-CT and grip strength, respectively. Locomotor activity was measured using the open field test. Triptolide (10-100 fM) up-regulated protein synthesis signals (IGF-1/p-IGF-1R/IRS-1/p-Akt/p-mTOR) and down-regulated protein degradation signal atrogin-1 in C2C12 myotubes. In LPS (100 ng·ml-1 )-treated C2C12 myotubes, triptolide up-regulated MyHC, IGF-1, p-IGF-1R, IRS-1 and p-Akt. Triptolide also down-regulated ubiquitin-proteasome molecules (n-FoxO3a/atrogin-1/MuRF1), proteasome activity, autophagy-lysosomal molecules (LC3-II/LC3-I and Bnip3) and inflammatory mediators (NF-κB, Cox-2, NLRP3, IL-1β and TNF-α). However, AG1024, an IGF-1R inhibitor, suppressed triptolide-mediated effects on MyHC, myotube diameter, MuRF1 and p62 in LPS-treated C2C12 myotubes. In LPS (1mg·kg-1 , i.p.)-challenged mice, triptolide (5 and 20 μg·kg-1 ·day-1 , i.p.) decreased plasma TNF-α levels and it increased skeletal muscle volume, cross-sectional area of myofibers, weights of the gastrocnemius and tibialis anterior muscles, forelimb grip strength and locomotion. These findings reveal that triptolide prevented LPS-induced inflammation and skeletal muscle atrophy and have implications for the discovery of novel agents for preventing muscle wasting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.