Abstract

Triptolide (TP) isolated from Tripterygium wilfordii Hook F. (TWHF) shows extensive anti-inflammation, immunosuppression and anti-tumor properties. However, its therapeutic potential is limited by its severe side effects, especially the nephrotoxicity. This study intended to explore the role of the GSK-3β/Fyn pathway in TP-induced oxidative damage and the potential mechanism of Nrf2 protein downregulation. Our data showed that TP induced oxidative stress and cell damage in the rat renal tubular epithelial cell line NRK-52E cells by activation of GSK-3β and nuclear translocation of Fyn, which resulted in decreased Nrf2 nuclear translocation. Moreover, TP significantly induced Nrf2 degradation by ubiquitination, which was blocked by the proteasome inhibitor MG132. In addition, cotreatment with a typical GSK-3β inhibitor, lithium chloride, promoted the nuclear translocation of Nrf2 and decreased the nuclear translocation of Fyn, which led to reduced cell damage, LDH leakage, glutathione depletion and cell apoptosis. Collectively, our results indicated that TP induced oxidative damage in NRK-52E cells by facilitating Nrf2 degradation by ubiquitination via the GSK-3β/Fyn pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call