Abstract

Polyphosphates are used in the meat industry to increase the water holding capacity of meat products. Tripolyphosphate (TPP) is a commonly used polyphosphate and it is metabolized into pyrophosphate and monophosphate in meat. The enzymes responsible for its metabolism have not been fully characterized. The motor domain of myosin (subfragment 1 or S1) is a likely candidate. The objectives of this study were to determine if bovine S1 hydrolyzes TPP, to characterize the TPPase activity of the fast (cutaneous trunci) and slow (masseter) isoforms, and to determine the influence of pH on S1 TPPase activity. S1 hydrolyzed TPP and in comparison with ATP as substrate, it hydrolyzed TPP 16-32% more slowly. Fast S1 hydrolyzed both substrates faster compared to slow S1 and the difference between the isoforms was greater with TPP as the substrate. The V(max) was 0.94 and 5.0 nmol Pi/mg S1 protein/min while the K(m) was 0.38 and 0.90 mM TPP for slow and fast S1, respectively. Pyrophosphate was a strong inhibitor of TPPase activity with a K(i) of 88 and 8.3 microM PPi for fast and slow S1 isoforms, respectively. Both ATPase and TPPase activities were influenced by pH with the activity being higher at low pH for both fast and slow S1 isoforms. The activity at pH 5.4 was 1.5 to 4-fold higher than that at pH 7.6 for the different isoforms and substrates. These data show that myosin S1 readily hydrolyzes TPP and suggest that it is a major TPPase in meat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call