Abstract
This paper investigates the utilization of triple polarization (TP) for multi-user (MU) wireless communication systems with holographic multiple-input multi-output surfaces (HMIMOSs), targeting capacity boosting and diversity exploitation without enlarging the antenna array sizes of the transceivers. We specifically consider that both the transmitter and receiver are equipped with an HMIMOS consisting of compact sub-wavelength TP patch antennas and operating in the near-field (NF) regime. To characterize TP MU-HMIMOS systems, a TP NF channel model is constructed using the dyadic Green’s function, whose characteristics are leveraged to design two precoding schemes for mitigating the cross-polarization and inter-user interference contributions. Specifically, a user-cluster-based precoding scheme that assigns different users to one of three polarizations, at the expense of system’s diversity, is presented together with a two-layer precoding technique that removes interference using a Gaussian elimination method. A theoretical correlation analysis for HMIMOS-based systems operating in the NF region is also derived, revealing that both the spacing of transmit patch antennas and user distance impact transmit correlation factors. Our numerical results showcase that the users located far from the transmit HMIMOS experience higher correlation than those closer in the NF region, resulting in a lower channel capacity. In terms of channel capacity, it is demonstrated that the proposed TP HMIMOS-based systems almost achieve 1.25 and 3 times larger gain compared to their dual-polarized version and conventional HMIMOS systems, respectively. It is also shown that the the proposed two-layer precoding scheme combined with two-layer power allocation realizes the highest spectral efficiency, among compared schemes, without sacrificing diversity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.