Abstract

Perchlorate anions used in industry are harmful pollutants in groundwater. Therefore, selectively binding perchlorate provides solutions for environmental remediation. Here, we synthesized a series of tripodal organic cages with highly preorganized Csp3-H bonds that exhibit selectively binding to perchlorate in organic solvents and water. These cages demonstrated binding affinities to perchlorate of 105-106 M-1 at room temperature, along with high selectivity over competing anions, such as iodide and nitrate. Through single crystal structure analysis and density functional theory calculations, we identified unconventional Csp3-H···O interactions as the primary driving force for perchlorate binding. Additionally, we successfully incorporated this cage into a 3D-printable polymer network, showcasing its efficacy in removing perchlorate from water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call